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Abstract
In the spirit of the White Bear version of fundamental measure theory we
derive a new density functional for hard-sphere mixtures which is based on
a recent mixture extension of the Carnahan–Starling equation of state. In
addition to the capability to predict inhomogeneous density distributions very
accurately, like the original White Bear version, the new functional improves
upon consistency with an exact scaled-particle theory relation in the case
of the pure fluid. We examine consistency in detail within the context of
morphological thermodynamics. Interestingly, for the pure fluid the degree of
consistency of the new version is not only higher than for the original White
Bear version but also higher than for Rosenfeld’s original fundamental measure
theory.

1. Introduction

In the mid-1970s, density functional theory, which was originally formulated for quantum
systems, has been extended to systems that follow classical statistical mechanics [1]. Since
then, density functional theory of classical systems (DFT) has developed to an indispensable
tool for the study of inhomogeneous systems such as crystals, fluids in confined geometries [2],
liquid–vapour interfaces and wetting and drying on substrates (for a recent review see [3]).
DFT is based on the fact that there exists a functional �[ρ] of the spatially varying particle
number density ρ(r) which possesses two properties: (i) it is minimized by the equilibrium
density ρ0(r), and (ii) the minimum value �[ρ0] equals the grand potential � of the system.
These properties give rise to the variational principle δ�[ρ]/δρ ≡ 0 for ρ(r) = ρ0(r).

One can decompose �[ρ] as

�[ρ] = F[ρ] +
∫

dr ρ(r)(Vext(r) − μ), (1)
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where μ is the chemical potential, Vext(r) the external potential acting on the particles and
F[ρ] is a unique functional corresponding to the intrinsic Helmholtz free energy of the system
in equilibrium.

In principle, equation (1) with the variational principle constitutes an excellent tool for
(numerical) calculations of ρ0(r) and hence the grand potential �[ρ0(r)] in arbitrary external
potentials. Unfortunately, for many systems of interest, only more or less crude approximations
for F[ρ] are known. The expression for the ideal gas, however, is known exactly

βFid[ρ] =
∫

dr ρ(r)
(
ln(�3ρ(r)) − 1

)
, (2)

where � is the thermal wavelength of the particles and β = 1/(kBT ) with Boltzmann’s constant
kB and the temperature T . The interactions among particles are described by the excess (over
ideal gas) free energy Fex[ρ] = F[ρ] − Fid[ρ], which for our purposes can be expressed as
βFex = ∫

dr �(r), where the excess free energy density �(r) is a functional of ρ(r).
In this work we direct our attention to mixtures of hard spheres. For these systems,

the exact expression for Fex is unknown but a number of approximations can be found in
the literature [4]. The interest in the hard-sphere system is manifold. The hard-sphere
system serves as a reference system for fluids with short-ranged repulsion and additional
attractive interactions among particles. The attractive part of the potential is usually treated
perturbatively [5]. Furthermore, colloidal suspensions with quasi-hard-sphere interactions can
be realized experimentally (see, e.g. [6]), which provides a test ground for predictions from the
field of the purely entropically driven hard-sphere systems, like entropic forces [7], asymptotic
decay of correlation functions in mixtures [8, 9] etc.

A very successful class of excess free energy functionals is formulated within the
framework of fundamental measure theory (FMT) introduced by Rosenfeld [10]. While the
original FMT has the Percus–Yevick (PY) equation of state as an output, later, with the set-
up of the White Bear version of FMT [11, 12], the more accurate Carnahan–Starling (CS)
equation of state was incorporated into FMT. The resulting gain in precision in the structure
of inhomogeneous density distribution [11–13] and in thermodynamics, however, has to be
paid for with a slight inconsistency appearing on the level of the pressure [11]: the pressure
in the hard-sphere fluid obtained from a scaled-particle theory equation differs slightly from
the underlying bulk equation of state. The aim of this work is to build upon the White Bear
version of FMT, using a new mixture formulation of the CS equation of state [14], such that
this inconsistency is resolved.

The paper is organized as follows. In section 2 we review Rosenfeld’s derivation of
FMT. Section 3 is dedicated to the presentation of the White Bear version of FMT and the
derivation of the new version of FMT. In section 4 we give a brief introduction to morphological
thermodynamics of hard-sphere fluids and compare the performance of Rosenfeld’s FMT and
the original White Bear version with that of the new functional. Section 5 contains our
conclusion.

2. Fundamental measure theory

In a seminal paper in 1989, Rosenfeld set up FMT, allowing him to derive his successful
free energy functional for the hard-sphere mixture [10]. We sketch his approach briefly in
the following.

We consider a ν-component hard-sphere mixture with spatially varying particle number
densities ρi (r), i = 1, . . . , ν. From the theory of diagrammatic expansions [5] the excess
free energy functional in the low-density limit is known exactly. One finds that the Mayer- f
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function, related to the pair interaction potential Vi j(r) between the particles of species i and
j by fi j(r) = exp[−βVi j(r)] − 1, plays a central role. In the case of hard spheres, Vi j is
either infinite if spheres overlap and zero otherwise. As a result the Mayer- f function obtains
a purely geometrical meaning: fi j (r) = −	(Ri + R j − r), where Ri and R j are the radii of
the respective species and 	 is the Heaviside function.

Inspired by the exact excess free energy functional of the one-dimensional hard-rod
mixture [15, 16], the key idea of FMT is the deconvolution of the Mayer- f function fi j(r) into
a sum of products with factors depending only on one of Ri and R j . Rosenfeld’s deconvolution
reads

− fi j (|ri − r j |) = ωi
0 ⊗ ω

j
3 + ωi

3 ⊗ ω
j
0 + ωi

1 ⊗ ω
j
2 + ωi

2 ⊗ ω
j
1 − ωi

1 ⊗ ω
j
2 − ωi

2 ⊗ ω
j
1 (3)

with four scalar and two vectorial (weight) functions

ωi
3(r) = 	(Ri − |r|), ωi

2(r) = δ(Ri − |r|), ωi
2(r) = r

|r|δ(Ri − |r|), (4)

and ωi
1(r) = ωi

2(r)/(4π Ri ), ωi
0(r) = ωi

2(r)/(4π R2
i ), and ωi

1(r) = ωi
2(r)/(4π Ri ). The

convolution product ⊗ in equation (3) is defined by

ωi
α ⊗ ω j

γ =
∫

dr ωi
α(r − ri ) ·ω j

γ (r − r j ), (5)

where the dot · stands for the usual product in the case of the scalar weight functions and for
the scalar product in the case of the vectorial weight functions. Using the weight functions, one
can define weighted densities

nα(r) =
ν∑

i=1

∫
dr′ ρi (r′)ωi

α(r − r′). (6)

The deconvolution, equation (3), can be used to express the exact low-density limit of the
excess free energy functional:

lim
ρi →0

βF ex = − 1
2

ν∑
i, j=1

∫
dr dr′ ρi (r)ρ j (r′) fi j (|r − r′|)

=
∫

dr (n0(r)n3(r) + n1(r)n2(r) − n1(r) · n2(r)). (7)

This result, together with the structure of the exact excess free energy functional of one-
dimensional hard-rod mixtures, leads to the assumption that the excess free energy density
�(r) can be approximated as a function of the six weighted densities only. This assumption
guarantees to recover the exact low-density limit of �(r). The expression for the free energy
density is obtained by an extrapolation of the known low-density result for �(r) to higher
densities using thermodynamic arguments.

We consider the case of a homogeneous hard-sphere mixture, i.e. the density distributions
ρi (r) ≡ ρi = Ni/V are constant. Ni is the number or spheres of species i in the volume V .
The excess pressure pex of a fluid mixture can be obtained from the excess free energy density
� via

βpex = −∂(V �)

∂V
= −� +

ν∑
i=1

∂�

∂ρi
ρi = −� +

∑
α

∂�

∂nα

nα. (8)

Note that the vectorial weighted densities, which are formally included in the above sum,
actually vanish in the uniform fluid. The ideal gas contribution to the pressure is βpid = ∑

i ρi ,
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which in terms of the weighted densities reduces to βpid = n0. Hence, according to
thermodynamics (TD), the total pressure within FMT can be written as

βpTD = n0 − � +
∑

α

∂�

∂nα

nα. (9)

On the other hand, there is an exact relation from scaled-particle (SP) theory (see [10] and
references therein) between the chemical potential μi of species i for a very large sphere and
the reversible work required for the creation of a cavity that can hold the large sphere of species
i : in the limit Ri → ∞ one obtains μi/Vi → pSP, where pSP is the total pressure of the fluid
mixture and Vi = (4/3)π R3

i . In our context, this is equivalent to (cf [10, 11])

βpSP = ∂�

∂n3
. (10)

Obviously, we obtain a differential equation for � by equating the expressions for pTD and
pSP. This equation was solved by Rosenfeld, who used the ansatz

� = f1(n3)n0 + f2(n3)n1n2 + f3(n3)n1 · n2 + f4(n3)n
3
2 + f5(n3)n2n2 · n2, (11)

with f1, . . . , f5 being functions of the dimensionless weighted density n3. The ansatz
equation (11) combines all multiplicative combinations of the weighted densities which share
the dimension of �, i.e. (length)−3. There is a solution �RF of the SP theory differential
equation. The integration constants can be fixed by the following additional requirements: (i)
in the low-density limit, equation (7) is recovered, (ii) for the one-component uniform hard-
sphere fluid the correct third virial coefficient is reproduced and (iii) the pair direct correlation
function c(2)(r) is regular for r → 0, which enforces the prefactor for the term ∝ n2n2 · n2.
The result is

�RF = −n0 ln(1 − n3) + n1n2 − n1 · n2

1 − n3
+ n3

2 − 3n2n2 · n2

24π(1 − n3)2
. (12)

Rosenfeld’s excess free energy gives a good account for many aspects of nonuniform hard-
sphere fluids, pure [17, 18] or mixtures [19]. However, it does not predict freezing, which
is actually observed for the pure hard-sphere fluid at a packing fraction η � 0.494. This
deficiency can be resolved empirically by modifying the third term in equation (12) [20, 21],
or more systematically by the recipe of Tarazona [22] who introduced an additional tensorial
weighted density in the last term of �RF. There remains another factor which limits the
accuracy of �RF, namely the equation of state obtained from equation (9) or, equivalently,
equation (10). One finds the pressure

βpPY = n0

1 − n3
+ n1n2

(1 − n3)2
+ n3

2

12π(1 − n3)3
, (13)

which is the compressibility expression from the solution of the PY integral equation [23]. The
PY pressure is in good agreement with simulations for the pure hard-sphere fluid at low packing
fractions but close to the freezing transition it overestimates the pressure by about 7%. This
problem can be solved by incorporating more accurate equations of state within the context of
Rosenfeld’s FMT as an extrapolation from low to high densities [11, 12]. In the next section
we introduce a new contribution along these lines.

3. The new functional

An empirical correction of the high-density behaviour of the PY compressibility result has
been given by Carnahan and Starling [24]. The CS equation of state has subsequently been
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generalized to hard-sphere mixtures resulting in the Boublı́k–Mansoori–Carnahan–Starling–
Leland (BMCSL) pressure pBMCSL [25, 26]. This equation of state can be written in terms of
the weighted densities of a homogeneous hard-sphere mixture:

βpBMCSL = n0

1 − n3
+ n1n2

(1 − n3)2
+ n3

2

(
1 − 1

3 n3
)

12π(1 − n3)3
. (14)

Using this fact, pBMCSL has been incorporated into FMT [11, 12]. This was achieved by
solving the differential equation for the excess free energy � which is obtained by equating
pBMCSL and the thermodynamic expression pTD as given in equation (9). Note that for the
implementation of this approach a bulk fluid mixture is considered for which the vectorial
weighted densities vanish. Hence, the solution of the resulting differential equation is obtained
by using the dimensional ansatz equation (11) without the vectorial contributions. For this
ansatz there is a unique solution if two additional requirements are made: (i) the result for �

is compatible with the low-density limit equation (7) and (ii) for the pure hard-sphere fluid
the third virial coefficient is recovered. Unlike in Rosenfeld’s derivation of �RF the vectorial
contributions have to be incorporated at a later stage. In analogy to �RF the substitutions
n1n2 → n1n2 − n1 ·n2 and n3

2 → n3
2 − 3n2n2 ·n2 are made in �. The resulting functional �WB

is called the White Bear version of FMT [11]. By virtue of these substitutions, �WB has the
correct low-density limit equation (7) and the regularity of the pair direct correlation function
for r → 0 is guaranteed.

The White Bear version of FMT has been shown to inherit all the good properties of
Rosenfeld’s FMT for the description of the hard-sphere fluid and improves the predictions of
thermodynamic quantities due to the more accurate underlying equation of state. This becomes
particularly apparent in the contact densities at a hard wall which are related to the pressure
via a sum rule (for a comparison with simulation data see, e.g., [27]). Furthermore, one
finds that the prediction of the freezing transition of the pure hard-sphere system agrees very
well with simulations [11]. A drawback of �WB is, however, that the scaled particle relation
equation (10) is violated, i.e. one finds that ∂�WB/∂n3 	= pBMCSL. This is of course not
surprising as the equality pTD = pSP unambiguously leads to Rosenfeld’s �RF, if we assume
that the free energy density is a function of the weighted densities n0, . . . , n3 and n1, and n2

alone. Despite this inconsistency of the White Bear version, the quality of the resulting density
distributions is high [13]. However, analytical results obtained from the free energy density
�WB within the context of morphological thermodynamics ([28] and references therein) are
affected.

We conclude that there is some room for improvement with respect to the self-consistency
of the free energy density. The basis for this improvement is a new generalization of the CS
pressure to mixtures of hard spheres which was recently suggested by the authors [14]. In terms
of the weighted densities, the new equation of state reads

βpCSIII = n0

1 − n3
+ n1n2

(
1 + 1

3 n2
3

)
(1 − n3)2

+ n3
2

(
1 − 2

3 n3 + 1
3 n2

3

)
12π(1 − n3)3

. (15)

The index CSIII refers to a hierarchy of extensions introduced in [14], where we showed
for binary and ternary hard-sphere mixtures that pCSIII improves upon pBMCSL compared to
computer simulations. Even more interestingly for the present context, pCSIII was constructed
such that it is consistent with the scaled-particle relation equation (10) in the case of the one-
component hard-sphere fluid. Note that consistency for the general hard-sphere mixture within
the framework of FMT would always result in the less accurate pressure pPY.
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By following the recipe for the derivation of the original White Bear version [11, 12],
described above, we calculate a new functional based on the pressure pCSIII

�WBII = −n0 ln(1 − n3) +
(

1 + 1

9
n2

3φ2(n3)

)
n1n2 − n1 · n2

1 − n3

+
(

1 − 4

9
n3φ3(n3)

)
n3

2 − 3n2n2 · n2

24π(1 − n3)2
(16)

with
φ2(n3) = (

6n3 − 3n2
3 + 6(1 − n3) ln(1 − n3)

) /
n3

3 = 1 + 1
2 n3 + O(n2

3),

φ3(n3) = (
6n3 − 9n2

3 + 6n3
3 + 6(1 − n3)

2 ln(1 − n3)
) /

(4n3
3) = 1 − 1

8 n3 + O(n2
3).

(17)

The new functional is an improvement of the White Bear version of FMT, as we shall show in
section 4. The index WBII is chosen to indicate that the new functional is mark II of the White
Bear functional.

For comparison we mention that in the above notation the original White Bear functional
�WB is recovered with φWB

2 (n3) ≡ 0 and

φWB
3 (n3) = (

9n2
3 − 6n3 − 6(1 − n3)

2 ln(1 − n3)
) /

(4n3
3) = 1

2 + 1
8 n3 + O(n2

3). (18)

We have compared predictions of our new version of FMT with corresponding results
obtained by the original White Bear version for a pure hard-sphere fluid and a binary mixture
close to a planar hard wall. We have found that the density distributions resulting from
numerical minimization of the functional equation (1) with �WB or �WBII, respectively, differ
very little. For the pure hard-sphere fluid, this can be expected from the fact that the underlying
bulk equation of state is the same for both versions of FMT and hence the contact densities
at the wall have to be identical. Comparison with density distributions from Monte Carlo
simulations revealed that the very small deviations of the DFT results from the simulation
data are clearly more significant than the mutual deviations between the two FMT versions.
We conclude that the limitations of FMT-based density functionals cannot be considerably
pushed forward by increasing the quality of the underlying bulk equation of state but are rather
determined by the structure of FMT itself, i.e. the set of weight functions which are employed
and hence the restriction to one-centre convolutions. For a discussion of this topic see [29]. A
slight improvement from the WBII version is indeed found for the description of the pair direct
correlation function as can be inferred from comparison with simulation data (not shown).

We find the main benefit of the new functional �WBII in the context of morphological
thermodynamics. Here, the self-consistency of �WBII on the level of the pressure, i.e. the
equality of pTD from equation (9) and pSP from equation (10) in the case of the pure fluid, is
crucial for the accuracy of analytical expressions obtained within the morphological theory. In
the next section we give a brief introduction to the theory and show examples which illustrate
the gain from the new functional �WBII.

4. Morphological thermodynamics

The morphometric approach to the grand potential of a fluid around a complexly shaped object
B (or a fluid inside a complexly shaped container) was inspired by the Hadwiger theorem [30]
from integral geometry [31]. The theorem states that every motion-invariant, continuous and
additive functional of the complexly shaped object B depends on the shape of B via only four
geometric measures: the volume V , the surface area A, the integrated (over the surface area)
mean and Gaussian curvature C and X , respectively. The latter are given as

C =
∫

∂B
dr

1

2

(
1

R1
+ 1

R2

)
, X =

∫
∂B

dr
1

R1 R2
. (19)
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Here R1 and R2 are the local principal radii of curvature on the surface of B. Note that X is
proportional to the Euler characteristic.

While the Hadwiger theorem is rigorous, the connection to physics is not obvious and
cannot be proven rigorously. However, there is strong numerical evidence [32, 28, 27, 33, 34]
that the solvation free energy of a convex body immersed in a solvent away from the critical
point and away from wetting or drying transitions takes the form

�� = pV + σ A + κC + κ̄ X (20)

where the conjugated quantities to the geometric measures of B are thermodynamic coefficients
depending only on the temperature, the chemical potentials and the given interaction between
B and the fluid, and among fluid particles, but not on the (complex) geometry of B. The
thermodynamic coefficients are p, the pressure, σ , the planar wall surface tension, and κ and
κ̄ , two bending rigidities.

Morphometry is obviously a very useful tool for the calculation of thermodynamic
quantities in complex geometries as it allows one to calculate the shape-independent
thermodynamic coefficients in simple geometry. The treatment of the actual complex geometry
(or a set of different geometries) then only requires a straightforward calculation of the
geometric measures. For instance, the morphometric approach has been applied successfully to
the calculation of solvation free energies of a protein in various geometrical configurations [34]
and to the thermodynamics of fluids in porous media [35].

The test geometry we choose here is the case where the particle B is a single hard sphere S
of radius Rs immersed in a pure hard-sphere fluid with radius R and density ρ. The change in
grand potential �� due to the insertion of the sphere S is obtained by minimizing the density
functional equation (1) with either �WB or �WBII. From the equilibrium density profile ρ0(r)
one can calculate �� = �[ρ0(r)]−�[ρ(r) = ρbulk]. By repeating the calculation for different
values of Rs the function ��(Rs) is obtained numerically.

On the other hand, we have the morphometric prediction for ��, equation (20). In
order to evaluate the morphometric solvation free energy it is most convenient to calculate the
geometrical measures and the thermodynamic coefficients at the surface at which the density
profile ρ0(r) jumps discontinuously to zero. This surface is parallel to the physical wall of S
at normal distance R. Note that it is actually the parallel surface and not the physical surface
that enters the external potential Vext(r) in equation (1) that S exerts on the fluid. In terms
of the parallel surface, which is simply a sphere with radius Rs + R, the morphometric form,
equation (20), reads

��(Rs) = p 4
3π(Rs + R)3 + σ4π(Rs + R)2 + κ4π(Rs + R) + κ̄4π. (21)

The extraction of the thermodynamic coefficients p, σ , κ and κ̄ from the values ��(Rs)

obtained by minimization of the density functional is therefore achieved by fitting equation (21)
to the numerical DFT data for different values of Rs. This fit was performed for the data from
�WB and �WBII in the range Rs ∈ [2R, 10R] for various values of the packing fractions of
the fluid. Indeed, we find the assumption made by equation (21) on the Rs-dependence of ��

clearly confirmed and in accordance with previous results [28]. We shall come back to our
results later on, referring to them as obtained via the ‘minimization route’.

In virtue of its applicability to mixtures, FMT also provides analytical expressions for
the thermodynamic coefficients p, σ , κ and κ̄ . For their derivation, we follow the ideas of
references [32, 36]. In [32] the curvature dependence of the excess surface grand potential and
contact density of a hard-sphere fluid in contact with hard curved walls was studied. The basic
idea is to consider a binary bulk mixture consisting of a hard-sphere fluid with radius R and
packing fraction η and a single sphere S, which is the second component at infinite dilution,
i.e. ρs → 0. �� is then obtained as the excess chemical potential μex

s . μex
s can be calculated
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as the derivative of the mixture excess free energy density with respect to ρs. Using any of the
above FMT expressions for the excess free energy � we find

β�� = βμex
s = lim

ρs→0

∂�

∂ρs

= ∂�

∂n3

4

3
π R3

s + ∂�

∂n2
4π R2

s + ∂�

∂n1
Rs + ∂�

∂n0
. (22)

Note that all vectorial contributions in � vanish in the uniform bulk. Due to the limit
ρs → 0 the partial derivatives of � are evaluated for the solvent only, i.e. a one-component
uniform fluid with radius R and packing fraction η.

A comparison of equations (21) and (22) allows us to identify the thermodynamic
coefficients, calculated for the parallel surface, with certain linear combinations of the partial
derivatives of �. We find that

βp = ∂�

∂n3
,

βσ = ∂�

∂n2
− R

∂�

∂n3
,

βκ = 1

4π

∂�

∂n1
− 2R

∂�

∂n2
+ R2 ∂�

∂n3
,

βκ̄ = 1

4π

∂�

∂n0
− R

4π

∂�

∂n1
+ R2 ∂�

∂n2
− 1

3
R3 ∂�

∂n3
.

(23)

The relation for the pressure is precisely the scaled particle relation, equation (10). In the
following, we refer to the above analytical results for the thermodynamic coefficients as the
outcome of the ‘bulk route’.

We give the explicit results for the coefficients only for the case of the new excess free
energy density �WBII:

βpWBII

ρ
= 1 + η + η2 − η3

(1 − η)3
,

βσWBII

Rρ
= −1 + 2η + 8η2 − 5η3

3(1 − η)3
− ln(1 − η)

3η
,

βκWBII

R2ρ
= 4 − 10η + 20η2 − 8η3

3(1 − η)3
+ 4 ln(1 − η)

3η
,

βκ̄WBII

R3ρ
= −4 + 11η − 13η2 + 4η3

3(1 − η)3
− 4 ln(1 − η)

3η
.

(24)

We emphasize that the pressure pWBII is precisely the quasi-exact CS expression. This is
not a trivial fact but rather a consequence of the construction of the novel mixture equation of
state equation (15) [14]. In contrast, the original White Bear version of FMT, which is based
on a different mixture generalization of the CS pressure [25, 26] does not possess this feature
of self-consistency, i.e. the derivative of �WB with respect to n3 does not yield exactly the CS
pressure [11].

We now compare the results from the bulk and minimization routes as obtained for
the different versions �WB and �WBII of FMT. In figure 1 we show our results for the
thermodynamic coefficients calculated from the new functional �WBII. The agreement for p is
perfect by construction of the equation of state, equation (15), and very good for the surface
tension σ . Note that from a comparison with simulation data σWBII was shown previously to
be of high accuracy for intermediate and high packing fractions of the hard-sphere solvent. At
low packing fractions, however, we found a small deviation from the exact low density limit of
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Figure 1. Results for the four thermodynamic coefficients p, σ , κ , and κ̄ of the hard-sphere fluid
are shown as obtained from the new excess free energy density �WBII, equation (16). The analytical
expressions given in equation (24) are denoted by the lines, while the results from the minimization
route are given by the symbols. η is the packing fraction. At η ≈ 0.494 the hard-sphere fluid
freezes.

σ [14]. Only for the bending rigidities κ and κ̄ does a slight inconsistency between the bulk and
the minimization route appear. However, this inconsistency remains below 1% at high values of
η and we conjecture from the very good agreement of σWBII with simulation data that also κWBII

and κ̄WBII deliver accurate expressions for the hard-sphere fluid thermodynamic coefficients.
With equations (24) we have obtained a set of analytical expressions for the thermodynamic
coefficients that are more accurate than previous suggestions, namely the results calculated
from the original White Bear version or those from Rosenfeld’s DFT.

As an illustration, we plot in figure 2 the difference of various results for the four
thermodynamic coefficients, p, σ , κ , and κ̄ , from the analytical expressions (24) of the WBII
version. Again, we find a high degree of self-consistency of the new functional �WBII (symbols,
except the crosses in figure 2). In contrast, the inconsistency of the original White Bear version,
which can be seen by the distance between the dashed line and the crosses in figure 2, is
considerably larger and appears even for the pressure. The analytical expressions derived in the
bulk route from �WB are therefore of a lower quality than equation (24), which also manifests
itself in their poorer agreement with simulations [14]. The good agreement between the results
from the minimization route for the two versions of FMT is a direct consequence of the good
agreement in the corresponding density profiles. This observation can be rationalized by noting
that the contact value of the density profile at a planar wall coincides for both versions of FMT
as a result of the same bulk equation of state.

We do not include the results from Rosenfeld’s functional �RF in figure 2 as this
would require us to extend the range of the vertical axis considerably and therefore obscure
the examination of consistency of the White Bear versions. When calculated from �RF,
however, the pressure follows the PY compressibility result, which quantitatively differs from
simulations, so that the analytical expressions from the bulk route only yield a qualitative
description of the thermodynamic coefficients. Surprisingly, the agreement between the bulk
and the minimization route is comparable to that of �WB except for the pressure, where �RF is
consistent [37]. Intuitively, one might expect a better agreement for �RF than for �WBII because
of the self-consistency on the level of the pressure. This interesting feature will be encountered
again in the following where we consider the contact density at a curved hard wall.
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Figure 2. Various results for the four thermodynamic coefficients, p, σ , κ , and κ̄ . Shown are
the differences of these coefficients obtained by various routes and theories to the analytical WBII
results, equation (24), cf the lines in figure 1. The symbols (except the crosses) denote the WBII
results from the minimization route. For comparison, we also show results from the original White
Bear version: those from the bulk route are plotted as dashed lines while the crosses denote the
outcome of the minimization route.

The contact density of the hard-sphere fluid at a hard wall is connected to the normal
derivative of the grand potential � [28]. The case of interest here is again a hard-sphere fluid
(radius R, packing fraction η) around a sphere S with radius Rs. We determine the grand
potential from the density functional �[ρ0(r)]. The normal derivative of � reduces due to
the symmetry to a derivative with respect to Rs at constant chemical potential, which is then
calculated as

∂�

∂ Rs
=

∫
dr

δ�[ρ0(r)]
δρ

∂ρ0(r)

∂ Rs
+

∫
dr ρ0(r)

∂Vext(r)

∂ Rs
. (25)

The first integral vanishes due to the equilibrium condition for ρ0(r), i.e. δ�/δρ = 0. The
derivative of the external potential gives rise to a δ-peak at the location of the parallel wall, and
one finds [38]

β
∂�

∂ Rs
= 4π(Rs + R)2ρc (26)

where ρc is the contact value of the density of the fluid at the sphere S. Using the morphometric
form equation (21) for ��, the grand potential � of the fluid containing the sphere S is
�(Rs) = −pVtot+��(Rs), where Vtot is the total volume of the system. In the thermodynamic
limit Vtot → ∞. If the morphometric form is inserted into equation (26) one obtains the contact
density ρc

ρc = βp + 2βσ

Rs + R
+ βκ

(Rs + R)2
. (27)

For Rs → ∞ the planar wall contact theorem ρc = βp is recovered and for finite values of Rs

the contact density is lowered.
We show results for the contact density ρc of a hard-sphere fluid with packing fraction

η = 0.4 as a function of the inverse of the radius Rs in figure 3. The symbols are the contact
densities obtained from the density profiles which we calculated by minimizing numerically
the functional equation (1). The lines in figure 3 show the morphometric prediction according
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Figure 3. Contact value ρc of the density of a hard-sphere fluid (radius R, packing fraction η = 0.4)
at a single sphere with radius Rs. We show results obtained from the excess free energy densities
�RF, �WB and �WBII, respectively. We compare results from the numerical minimization of the
density functional (symbols), equation (1), with the morphometric prediction (lines) according to
equation (27).

to equation (27) with the analytical expressions for the thermodynamic coefficients from the
different versions of FMT (cf the bulk route above). The first observation we make is that the
numerical results from �WB and �WBII are nearly indistinguishable, and indeed in the planar
wall limit, Rs → ∞, the data coincide by construction of the functionals. Taking this fact
into account it is understandable that the results for ρc for finite values of Rs are very similar.
The numerical data for �RF tend towards the PY pressure for Rs → ∞, which is known to
overestimate the actual pressure in the hard-sphere fluid for sufficiently high values of η. In the
limit Rs → 0 (point-like object), the data from the three versions of FMT coincide.

Comparing with the analytical prediction from morphometry, we find very good agreement
between the results from �WBII over the whole interval of Rs. Only for very small radii Rs is a
slight deviation visible. Therefore, the new functional improves upon the results of the original
White Bear version of FMT, which performs well at small radii, but produces a small error at
large values of Rs due to the inconsistency of �WB in the pressure.

As mentioned above for the thermodynamic coefficients, a moderate agreement in the case
of Rosenfeld’s FMT is also observed for the contact density. While the approach is consistent
for large values of Rs by construction of the functional, in the range of smaller values of Rs

a deviation is clearly visible. This behaviour has been observed previously [32]. We find
this fact remarkable because it shows that, from the point of view of self-consistency, the new
hard-sphere mixture equation of state (15) is better suited for an implementation within FMT
than the PY mixture equation of state (13) itself. This is even more surprising as the latter is
characterized by full consistency for mixtures on the level of the pressure.

5. Conclusion

In this work, we have introduced a new density functional for hard-sphere mixtures which,
in the spirit of the original White Bear version, incorporates the quasi-exact CS equation of
state within the framework of FMT. While the original White Bear version is based on the well
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known BMCSL equation of state, the White Bear version mark II, presented here, is derived
from an improved mixture generalization of the CS equation of state recently introduced by
us [14]. The new functional WBII, besides having all the good properties of the original
White Bear version, improves the level of self-consistency. The level of consistency of the
WBII version for the pure hard-sphere fluid is examined in the context of morphological
thermodynamics. Our study reveals that, beside the improved consistency of the pressure,
the consistency of the surface tension σ and the bending rigidities κ and κ̄ are also clearly
improved. Supported by a previous comparison to simulation data for the surface tension [14]
we can argue that the thermodynamic quantities derived from the new functional WBII are on
a par with simulations.

We have presented evidence that in the case of the pure hard-sphere fluid the degree of
self-consistency of the WBII version is even higher than that of Rosenfeld’s original FMT.
This is a remarkable finding as Rosenfeld’s FMT is by construction fully (i.e. for an arbitrary
mixture) consistent on the level of the pressure. Apparently, this fact does not translate into
a high level of consistency for other thermodynamic quantities (such as surface tension and
bending rigidities) of the pure fluid. We conclude that, as concerns the pure hard-sphere fluid,
the recent mixture generalization of the CS equation of state (15) is even better suited as a
staring point for FMT than the PY compressibility mixture equation, underlying Rosenfeld’s
FMT. Note further that the PY mixture equation of state deviates significantly from simulations
at sufficiently high densities.

In conclusion, with the WBII version we have constructed a new hard-sphere functional
based on the CS pressure which improves upon the original White Bear functional. Although
the differences between the density profiles in simple geometries resulting from minimization
of the functionals are small, the increased self-consistency of the WBII version proves crucial
for analytical calculations within the context of morphological thermodynamics.

Our considerations are based on thermodynamic arguments and result in a change of
the dependence of the free energy density � on the weighted density n3. There are several
other developments in FMT that were mainly concerned with improving the performance
of FMT in highly confined geometries. These studies suggest changing the dependence
of � on n2 and n2 [20, 21] or introducing new tensorial weighted densities [22]. It is
worth pointing out that these improvements concerning the description of hard-sphere fluids
in highly confined geometries are straightforwardly combined with the improvements on
thermodynamics presented here.
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